Inference of soil spatial variability properties from earthquake recordings and nearsurface geophysical/geotechnical data

C. Cornou, E. Koufoudi, E. El Haber, I. Zentner, G. Ménard, E. Maufroy

E. Youssef, D. Abdel Massih, F. Lopez-Caballero, D. Jongmans, T. Al Bittar, A. Imtiaz, C. Guyonnet-Benaize, L Deroo, V. Helias, E. Weber, M. Collombet, F. Hollender

ISTerre, Université Libanaise, Ecole Centrale Paris, EDF, BRGM, EDYTEM

Spatial variation of ground motion at small spatial scale

Basin or topography scale

Basin scale [few tens of m -> few kms]

Source : Laurence Barret

Near-surface heterogeneities [few m -> few tens of m]

Example of small scale variability on surface ground motion

Example of small scale variability on surface ground motion

33 papers; 10-20 first top meters

What do we know about characteristic sizes of near-surface heterogeneities ?

Spatial sampling theorem not respected !

Youssef Abdel-Massih et al. 2018, submitted

What do we know about characteristic sizes of near-surface heterogeneities ?

How to infer characteristics of near-surface heterogeneities ?

Use of geotechnical boreholes

- \Rightarrow need sites with highly spatially sampled geotechnical boreholes
- \Rightarrow Example of Grenoble basin

Use of earthquake recordings

- \Rightarrow Need of dense arrays
- \Rightarrow Example of dense arrays in Europe
- \Rightarrow ? Possible extension using seismic noise wavefield ?

Grenoble basin

bedrock topography Chaljub et al., 2006

Grenoble basin

Lacroix, 1970

Geophysical and geotechnical/borehole data

Geotechnical / borehole data

A) Andina penetrometer test (modern penetrogram format); B) Destructive drilling description log (ancient format); C) Pressuremeter test with geological interpretation; D) Electrical resistivity results

Correlation between geological facies and Vs

a) Profile with geotechnic wells near PLANS seismic stations. Shear wave velocity profiles derived from MASW measurements included in profile. Wells start level are NGF altitudes (with interpolated values in Italics).
 b) Orientation of well profile is displayed in the map.
 c)Measured (± standard deviation) dispersion curve (red dots) and inverted dispersion curves (gray lines).
 d) Geological legend.

I abi	eau 2. Range of snea	ar-wave velocities at	various depth rang	es.	
	Layer or transition zone	Shear-waves velocity values	Depth Interval	Remarks	
Station Name		(m/s)	(m)		
	Shalow layer	230 - 250	0 - 2.5		
ILL	Transition zone		2.5 - 2.7	7	
	Lower layer	370 - 380	2.7 - 9.1	7	
	Shalow layer	200 - 230	0 - 2.5	clear transition in Vs profile	
ILL 01	Transition zone		2.5 - 3.2	as a consequence of clear	
	Lower layer	360 - 430	3.2 - 8.7	curve at about 40 Hz	
	Shalow layer	250 - 270	0 - 1.6		
ILL_02	Transition zone		1.6 - 1.9		
	Lower layer	420 - 475	1.9 - 6.9	7	
	Shalow layer	110 - 385	0 - 1	High uncertainty over the	
	Transition zone		1-3	entire Vs profile as a	
ILL_03	Lower layer	280 - 520	3 - 8	consequence of a very limited measured wavelength range	
	Shalow layer	240 - 275	0 - 2.4	clear transition in Vs profile	
ILL 04	Transition zone		2.4 - 2.75	as a consequence of clear	
122_04	Lower layer	410 - 435	2.75 – 9.6	inflexion of the dispersion curve at about 40 Hz	
	Shalow layer	280 - 375	0 - 1	l la sadajatu at shallaru	
ILL_05	Transition zone		1 - 1.9	Uncertainty at shallow	
-	Lower layer	400 - 420	1.9 - 10	deptit	
	Shalow layer	275 - 300	0 - 2.5		
ILL_06	Transition zone		2.5 - 3.2	7	
	Lower layer	345 - 400	3.2 - 5.4	7	
	Shalow layer	125 - 310	0 - 1	Limited frequency range	
	Transition zone		1 - 4	/Uncertainty at shallow	
ESPLANADE	Lower layer	250 - 350	4 - 10	 depth due to large standard deviation on the dispersion curves 	
G 15	Shalow layer	90 - 160	0 - 2		
	Transition zone			clear velocity gradient	
	Lower layer			7	
	Shalow layer	425 - 550	0 - 1		
GEVES	Intermediate layer			I opmost high velocity	
	Lower layer	100 - 150	1 - 13.9	layer	
	Shalow lavor	100 270	0.15	1	

Table and 0. Denne of the second sector strengthere at the second sector second second

Correlation between geological facies and Vs

a) Profile with geotechnic wells near PLANS seismic stations. Shear wave velocity profiles derived from MASW measurements included in profile. Wells start level are NGF altitudes (with interpolated values in Italics).
 b) Orientation of well profile is displayed in the map.
 c)Measured (± standard deviation) dispersion curve (red dots) and inverted dispersion curves (gray lines).
 d) Geological legend.

Entité	Vs [m/s]	Prof [m]
Terre	250	/
Remblai	250	/
Béton	1000	/
Limon	150	/
Gravier	400	/
Sable	400	/
Argile	150	≤20m
Argile	200	>20m
Tourbe	100	/
Marne	150	/
Galet	400	/
Enrobé	1000	/
Bloc Gravier	400	/
Bloc calcaire	1000	/
Troncs	100	/

Uncertainty on Vs : 20 %

Average Vs from 0 to 20 m depth

Average Vs from 0 to 20 m depth

CoV Vs for each geological zone

Average CoV Vs from 0 to 20 m depth accounting for borehole data within 200 m radius

Horizontal Lc from 0 to 20 m depth

Conclusions on Grenoble basin

- Test of the robustness of results (uncertainty on Vs, depth variation, ...)
- Lateral variation of Vs over short distance (up to 40%)
- CoV Vs about 15-20% in geological unit dominated by gravels
- CoV Vs about 40-50% in geological unit showing alternance of gravel and sands
- Lc is ranging between 15 and 30 m whatever the geological unit

What can be extracted from earthquakes ?

Spatial correlation : variation of engineering indicators (Arias intensity, duration, Fourier amplitude spectrum, etc.) as a function of inter-station distance

 $\Delta AI(\Delta X) = Avg \left(|AI(i + \Delta X) - AI(i)| \right)$

Synthetics:

- One layer over halfspace
- SV plane wave
- FLAC2D code
- Frequency range : 1 25 Hz

Seismic phase: - «S-wave»

What can be extracted from earthquakes ?

Simple interpretation : spatial correlation of the « S-wave » is mainly controled by wave propagation within the 1D soil underneath the observation site

 \Rightarrow θx could be easily inferred from threshold distance (D) of spatial correlation (D=2 θx)

Spatial correlation of seismic ground motions of very dense seismic arrays in Europe

Koufoudi et al. (2019) - submitted

(a)

(c)

(b)

(d)

Array	Site Class	Topography	$V_{s,30} \ ({ m m/sec})$	Thickness (m)
Fuccino	Soil	Flat	150	20
Grenoble	Soil	Flat	250	40
Argostoli Soil	Soil	Flat	250	60
Argostoli Rock	Soft Rock	Flat	830	-
St. Guérin	Hard Rock	Mountains	~ 1400	-

Table 2. Geological characteristics of the European dense seismological arrays.

Table 1. Characteristics of the European dense seismological arrays.

Array	Loc.	Number of stat.	Min spacing (m)	Max spacing (m)
Fuccino	Italy	20	100	900
Grenoble	France	15	15	80
Argostoli Soil	Greece	21	~5	~150
Argostoli Rock	Greece	21	~9	~350
St. Guérin	France	9	~20	~210

Grenoble

30% of PGV variation

Argostoli rock

40% of PGV variation

Spatial correlation of seismic ground motions of very dense seismic arrays in Europe

Koufoudi et al. (2019) - submitted

Table 2. Geological characteristics of the European dense seismological arrays.

Array	Site Class	Topography	$V_{s,30} \ ({ m m/sec})$	Thickness (m)
Fuccino	Soil	Flat	150	20
Grenoble	Soil	Flat	250	40
Argostoli Soil	Soil	Flat	250	60
Argostoli Rock	Soft Rock	Flat	830	-
St. Guérin	Hard Rock	Mountains	~ 1400	-

Table 1. Characteristics of the European dense seismological arrays.

Аггау	Loc.	Number of stat.	Min spacing (m)	Max spacing (m)
Fuccino	Italy	20	100	900
Grenoble	France	15	15	80
Argostoli Soil	Greece	21	~5	~150
Argostoli Rock	Greece	21	~9	~350
St. Guérin	France	9	~20	~210

Spatial correlation of seismic ground motions of very dense seismic arrays in Europe

1214161820

1214161820

S-wave portion of signals (AI criteria; Abrahamson, 2007)

Plateau at about 0.9 => Differences of amplitude are uncorrelated

Plateau reached for freq. > 6-9 Hz whatever site condition (and continents)

Higher spatial variability for Grenoble at low frequency

Argostoli rock and soil arrays exhibit similar variability

Spatial correlation of seismic ground motions of very dense seismic arrays in Europe

Simulation in random media (no layering) Code Aster

SV plane wave; delta-like source time function Frequency range: 1-20 Hz CoV=20%; mean_Vs = 400 m/s; $\theta z = \theta x/10$ $\Theta x = Lc$

Threshold distance (D)

- Varies with frequency/wavelength
- Occurs beween Lc and 2Lc

For application to real sites, use of Integral (FAS)

Spatial correlation of seismic ground motions of very dense seismic arrays in Europe

Simulation in random media (no layering) Code Aster

SV plane wave; delta-like source time function Frequency range: 1-20 Hz CoV=20%; mean_Vs = 400 m/s; $\theta z = \theta x/10$ $\Theta x = Lc$

Spatial correlation of seismic ground motions of very dense seismic arrays in Europe

Fucino : Lc < 200 m

St Guérin : no weathering / hard rock

Argostoli soil : Lc [13 26 m]

Argostoli rock : Lc [22 42 m] => consistent with Svay et al. (2017) Lc = 30 m

Grenoble: Lc [14 28 m] => Consitent with borehole analysis

Learnings / Next steps

Spatial correlation from earthquakes

- Analysis of earthquake recordings at dense array is promising to extract horizontal autocorrelation distance
 ⇒ Can we use seismic noise wavefield instead ?
- Ground motion amplitude is not any more spatially correlated for frequencies > 6-9 Hz whatever the site
 ⇒ Why ? Related to frequency bandwidth and typical frequency content of earthquake recordings ?
 ⇒ simulation of spatially variable ground motion at small spatial scale (application: PSHA for lifelines,
 shake-maps in urban environement)
- Estimation of CoV from spatial coherence (El Haber, 2018)

Near surface heteregeneities from boreholes

- Time consuming
- Vertical autocorrelation distance range seems to be quite well constrained, typically from 1 to 5 m