Variability of earthquake ground motion due to small scale heterogeneities: comparison of 2D and 1D probabilistic approaches

Presented by:

Elias EL HABER

16/11/2018

Influence of 2D heterogeneous elastic soil properties on surface ground motion spatial variability.

El Haber, E., Cornou, C., Jongmans, D., Abdelmassih, D. Y., Lopez-Caballero, F., & AL-Bittar, T. (2019).

Soil Dynamics and Earthquake Engineering, 123, 75-90.

Definition and near surface causes

Spatial variability of earthquake ground motion (SVGM)

Difference in amplitude and phase between two recordings on

surface

Definition and near surface causes

Spatial variability of earthquake ground motion (SVGM)

Difference in amplitude and phase between two recordings on

surface

[few hundred of m -> few kms]

Lithology

Small scale heterogeneities

[few cms -> few hundred of m]

Small scale heterogeneities and site response prediction – Example (1)

=> Importance of the small scale heterogeneities in the site response prediction

=> Not all the 1D profiles can predict the seismic response recorded on surface

Small scale heterogeneities and seismic response prediction – Example (2)

Rodriguez-Marek et al. (2014)

Strategy and objectives

Outline

Small scale heterogeneities modeling and waves propagation simulation

Effect of the 2D heterogeneities on single station ground motion indicators

2D and 1D comparison

Conclusions and perspectives.

2D modeling of small scale heterogeneities

Probabilistic approaches

How to apply this method in our study?

Soil structure with uncertainties

Multiple possible scenarios/probabilistic realizations

Probabilistic approach - Definition

Definition of the deterministic model

Modeling Vs as a random field

Statistical parameters – range of values

Over 33 characterization studies of near surface soil properties

Statistical parameters – chosen values

Random field discretization and waves propagation simulation

Expansion Optimal Linear Estimation (EOLE)

- Krigging method
- Account for the 2D spatial correlation in the soil

Li et Der Kiureghian, 1993

FLAC2D: Finite difference code

- Linear analysis
- No attenuation

Synthetic simulation - Example

Single station ground motion indicators – time and frequency domains

Time domain

 Energie du signal (ou Intensité d'Arias):

$$A_b I = \int_0^\infty v(t)^2 dt$$

• Durée du Signal:

$$DA_bI = t_{E=0.95A_bI} - t_{E=0.05A_bI}$$

Average and standard deviation at single station (1)

COV is controlling the ground motion variability on surface

Average and standard deviation at single station (2)

- For the average, no large difference between probabilistic and deterministic approaches.
 - COV controls the ground motion variability.
- A shift in the fundamental frequency is observed for COV 40%.

Comparison 2D/1D – Time domain

Bedrock

Arias Intensity [-] 0.5 = 0.5

1D calculations clearly underestimate the energy and the duration of the ground motions recorded on surface

Comparison 2D/1D – Frequency domain

Average

Standard deviation

- The 1D approach can predict the $f_{
 m 0}$ and AF_{fo} average values.
 - The 1D approach under estimate the variability of AF_{fo}

Comparison 2D/1D – Spectral amplification

The 1D approach underestimate the amplification variability especially at high frequencies.

Main conclusions

- Small scale heterogeneities generate diffracted surface waves that increase the duration and energy of the seismograms on surface. Waves scattering is more highlighted in 2D approaches than the 1D analysis.
- COV is the statistical parameter mainly controlling the variability of the single station ground motion indicators.
- Even though 1D probabilistic approaches can predict the fundamental frequency and corresponding amplification, however, they under estimate the spectral amplification variability especially at high frequencies.
- 1D approaches may not be appropriate to replace the 2D ones in the prediction of site response.

Some perspectives

- Account for attenuation and non-linearity behavior in the wave propagation simulation.
- More realistic Vs profiles.
- More complex soil structures (different geology layers, 3D modeling, ...)

Thank you for your attention

