

Impact of soil spatial variability on high frequency site response and surface waves

Irmela Zentner, Aurélie Gosset EDF R&D Kristel Meza-Fajardo BRGM

EXAMIN workshop June 6th 2019

Plan

1. Introduction

- Context an objectives
- 2. Impact of wave scattering on site response
 - Random field modelling
 - High frequency decay and kappa
 - Surface waves and 1D-2D site response
- 3. Conclusion & perspectives

Introduction

- Site effect: layering, basin, topography, subsoil configuration
- Local Spatial variability of soil properties: variability of soil properties and seismic motion on ground surface even at local scale (< 100m)

Introduction

- Impact of local spatial variability on surface ground motion
 - Incoherence of ground motion (coherency functions, ...) -> Afifas talk
 - High frequency decay
 - Damping drives high frequency attenuation
 - Decay more important for higher frequencies, not fully explained by soil intrinsic damping (Thompson et al 2012, Sato 2018, ...)
 - Comprehensive analyses of impact of scattering and intrinsic damping on kappa
 - 1D versus 2D site response,
 - Are 1D soil column analyses enough?
 - Creation and properties of surface waves

• Lognormal random field for Young's modulus

 $E(x) = E_m(x)exp[\beta_E U(x)]$ Gaussian random field

 Centered standard Gaussian random field U(x) entirely characterized by its correlation function

 $R_U(x,x') = \boldsymbol{E}(U(x)U(x'))$

Depends only on distance $\zeta = x - x'$ for a homogeneous random field and on parameters Lc and cov

- o 2D site response
 - Numerical investigation of impact of wave scattering using code_aster

o Animation

Spectral amplitude of ground motion
 Decay as defined by (Anderson & Hough 1984)

$$A(f) = A_0 e^{-\pi \kappa f}, f > f_{max}$$

slope
$$-\pi\kappa = \frac{dln(A(f))}{df}$$

FAS
$$A(f) = \Omega(f)D(r, f)S(f)$$

o Kappa

- Contribution to high frequency decay from site and path $\kappa(R) = \kappa_0 + \kappa_{path}(R)$
- Considerable variations of κ_0 due to different site conditions, represents attenuation due to rock subsoil properties \rightarrow "site kappa"
- Site transfer function S(f)
- Site response
 - Velocity profile and damping $\xi = \frac{1}{20}$
 - Intrinsic damping and wave scattering effect $Q_{ef}^{-1} = Q_i^{-1} + Q_{sc}^{-1}(f)$
- Q & kappa represent attenuation

- $\kappa_0 = \int_0^z \frac{dz}{V_s(f)Q_{ef}(f)}$
- Study impact of intrinsic damping and scattering separately

• Transfer function with and without damping

Vs=600m/s, fcoup=50Hz

Relation between soil damping and kappa

Ration of transfer functions with and without intrinsic soil damping $\Rightarrow \Delta \kappa = \kappa_i$

AH	0.03	0.05	$\Delta \kappa$	0.01042	0.0160	_ 1
<i>t</i> *	0.0086	0.0143	AH	0,037	0,056	$Q_i = \frac{1}{AH}$
$\Delta \kappa$	0.01042	0.0160				λ <i>1α</i> +*_⊔/Ο \/ο
			•			$\Delta K \sim I = \Pi/Q_i VS$

 $S(f) = \exp(-\pi H f / Q_i V_s)$ (no contrast)

EXAMIN workshop June 6th 2019

Vs=600m/s, fcoup=50Hz AH = 0.01

- Transfer function with and without spatial soil variability
 - L_c (m)
 10
 20
 30

 0.2
 0.00970
 0.00969
 0.00941

 0.4
 0.0118
 0.0105
 0.00992

$$\uparrow$$
 cov \Rightarrow \uparrow kappa

• Separate κ_{sc} and κ_i

 κ en fonction de L_c et cov :

Ratio of transfer functions with (mean over 10 realizations) and without soil heterogeneities

- Transfer function with and without spatial soil variability
 - Determine additional damping due to scattering as a function of cov and Lc

$$\kappa_{sc} = \Delta \kappa = \kappa_0 - \kappa_a$$

<i>L_c</i> (m)	10	20	30
0.2	0.00175	0.00174	0.00146
0.4	0.00385	0.00255	0.00197

AH = 0.01

 $\uparrow \operatorname{cov} \Rightarrow \uparrow \operatorname{kappa}$

1D vs 2D site response

- Impact of 2D scattering
 - Classical approach consists in constructing 1D site response by soil column analyses
 - Extraction of soil columns

1D vs 2D site response

Surface waves •

Ο

Comparison of 1D-2D site response

- Scattering : the path of the waves is impacted by the random velocity heterogeneities, late arrivals
- Creation of surface waves
- Numerical experiments
 - 2D soil domain with point source

• Numerical experiments

Vs=600ms Lcv = 10m

o Total wavefied

EXAMIN workshop June 6th 2019

o Extraction of Rayleigh waves (K. Meza-Fajardo et al 2015)

• Extraction of Rayleigh waves (K. Meza-Fajardo et al 2015)

• Analysis of surface waves

 Dominant frequencies of surface waves from peak ampitude of surface wave S-transform

• Analysis of surface waves

 Dominant frequencies of surface waves - close to surface waves, large dispersion

Further analyses needed to study link between soil variability and eigenfrequency of surface waves

Conclusion

- o 2D analyses with Spatial soil variability
- Wave scattering
 - Additional damping (high frequency attenuation)
 - Late wave arrivals (elongation of signals) and creation of surface waves
 - High dispersion of quantities of interest

Perspectives

- Quantitative assessment of soil variability's impact
 - on surface waves (eigenfrequency, amplitude ratio)
 - and additional attenuation (kappa)
- Random filed generation: introduce supplementary information in order to avoid not physical configurations (borehole close to site, other geophysical data...)
 - Conditional random fields: soil profiles known at distinct coordinates

Perspectives

- Assess impact and adequateness of correlation fiunctions
 - Markov model (exponential kernel) represents multi-scale character (Brownian motion)

$$L_{ch} = 10L_{cv}$$

Gaussien kernel produces more regular random fields

THANKS QUESTIONS?

o Global FAS model

 $A(f) = \Omega(f)D(r, f)S(f)$

Example of Surface wave extraction. At 270 m from the source

Correlation length: 0.8781

 \circ 1D, 2D and 3D domains for separable correlation function R_U

$$R_U(\mathbf{x}, \mathbf{x}') = R_U(x, x') R_U(y, y') R_U(z, z') \qquad \mathbf{x} = (x, y, z)$$

$$U(x, y, z) = \sum_{m=1}^{N_m} \sum_{k=1}^{N_k} \sum_{l=1}^{N_l} \sqrt{\lambda_k^{(x)} \lambda_l^{(y)} \lambda_m^{(z)}} \phi_k^{(x)}(x) \phi_l^{(y)}(y) \phi_m^{(z)}(z) \xi_{klm}$$

- Can account for different length scales in vertical and horizontal direction
- Karhunene Loeve expansion defined on bounding volume

$$L_{ch} = 6 L_{cv}$$